Graphene transfer methods for the fabrication of membrane-based NEMS devices

Wagner, S. et al. Microelectronic Engineering 2016 DOI: 10.1016/j.mee.2016.02.065
In this work, graphene, fabricated using a Moorfield nanoCVD-8G system, was transferred onto pre-fabricated microcavity substrates using different methods. The devices were then investigated and analyzed with respect to yield and quality of the free-standing membranes on a large-scale. An effective transfer method for layer-by-layer stacking of graphene was developed to improve the membrane stability and thereby increase the yield of completely covered and sealed cavities. The transfer method with the highest yield was used to fabricate graphene NEMS devices. Electrical measurements were carried out to successfully demonstrate pressure sensing as a possible application for these graphene membranes.

Link: http://www.sciencedirect.com/science/article/pii/S0167931716301083

Moorfield products: nanoCVD-8G

Recent posts

Tools That Fit Like a Glove

Research-grade vacuum deposition with inert sample handling Where samples or deposition materials are air sensitive, a glovebox-integrated PVD tool is a must. Moorfield are experienced

Read More »
PC system control

Coming to a Screen Near You

A new feature for our flexible PVD range Our modular MiniLab systems are now optionally available with state-of-the-art PC control interfaces. While hardware control is

Read More »
Share on facebook
Facebook
Share on google
Google+
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on pinterest
Pinterest
  • Sign up to our newsletter