Real-world applications of Moorfield products in science
Engineering Cu2O Nanowire Surfaces

Paper Abstract
Cu2O is a narrow band gap material serving as an important candidate for photoelectrochemical hydrogen evolution reaction. However, the main challenge that hinders its practical exploitation is its poor photostability, due to its oxidation into CuO by photoexcited holes. Here, we thoroughly minimize the photo-oxidation of Cu2O nanowires by growing a thin layer of the TiO2 protective layer and an amorphous layer of the VOx cocatalyst using magnetron sputtering and atomic layer deposition, respectively. After optimization of the protective and the cocatalyst layers, the photoelectrode exhibits a current density of −2.46 mA/cm2 under simulated sunlight (100 mW/cm2) at 0.3 V versus reversible hydrogen electrode, and its performance is stable for an extended illumination time. The chemical stability and the good performance of the engineered photoelectrode demonstrate the potential of using earth-abundant materials as a light-harvesting device for solar hydrogen production.
How Moorfield products helped:
Magnetron sputtering of copper onto FTO glass substrates.
A pure copper film was deposited on FTO glass substrates by magnetron sputtering using our Minilab 060 using a copper (99.99%) target. Optimized deposition conditions such as an operating pressure of 1.4 × 10–3 mbar and a substrate temperature of 100 °C were used to improve adhesion. The deposition was conducted in argon gas flow (20 sccm). A film with a thickness of 1.8 μm was obtained after 45 min deposition.