New Roles Available. View Details

Menu

MiniLab 080

MiniLab 080 systems offer tall chambers ideally suited for thermal, LTE and e-beam evaporation techniques requiring longer working distances for optimum uniformity.

Techniques:

Techniques: Thermal evaporation // Low-temperature thermal evaporation (LTE) // E-beam evaporation // Magnetron sputtering

The MiniLab 080 standard configuration includes a turbomolecular pump positioned on an ISO160 port at the rear of the vacuum chamber. The vacuum chamber sits on a double-rack frame that contains all system control electronics and power supplies. MiniLab 080 systems are available with load-locks—please call for details.

The tools are ideally suited to evaporation techniques where long working distances are required for best uniformity, and where evaporant incident angles close to 90° allow for optimal results for lift-off applications. However, as well as thermal, LTE and e-beam evaporation, the tools can also be fitted for magnetron sputtering (commonly as a multi-technique system).

Substrate stages, usually at the top of the chamber, can accommodate substrate sizes up to 11” diameter. Substrate heating, rotation, bias and Z-shift are available, together with planetary stages and source and substrate shutters. Configurations range from a manually operated thermal evaporation system up to a multi-technique tool with fully-automated process control.

Download the system PDF

Key features

  • Modular design
  • Front-loading D-shaped vacuum chamber
  • Turbomolecular and cryo pumping systems
  • Base pressures <5 × 10-7 mbar
  • Metals, dielectrics and organics deposition
  • Up to 11” diameter substrates
  • Up to 11” diameter substrates
  • Touchscreen HMI/PC for system control
  • Equipped for easy servicing
  • Comprehensive safety features and interlocks
  • Cleanroom compatible
  • Load-locks available

Options

  • Pumping: Turbomolecular or cryogenic high-vacuum pumps, rotary or scroll backing pumps.
  • Gas/pressure: Manual or automatic control via MFCs and throttle valves.
  • Load-locks: Single- and multiple-sample.
  • Stages: Rotation, heating, cooling, Z-shift, bias and planetary.
  • Shutters: Source and substrate, pneumatic or motorised.
  • Operation: Manual or automatic via front panels, touchscreen HMI or PC.
  • Process: Quartz crystal sensor heads for rate/thickness monitoring or feedback-loop control.

Typical configurations:

Thermal evaporation (metals):

Four-source TE4 thermal evaporation component with source shutters and rotation stage. High power TEC-4A power supply and controller with recipe-based automated control. Quartz crystal sensor head with PC software for rate/thickness monitoring.

Thermal evaporation (metals and organics)

Two TE1 thermal evaporation sources for metals and four LTE-1CC components for organics. Source shutters and rotation stage. Evaporation power supplies linked to quartz crystal sensor head and Inficon SQC-310 process controller for automated process control per user-defined rates/thicknesses.

E-beam evaporation

Multi-pocket (e.g., 6 × 7 cc or 8 × 4 cc) water-cooled e-beam source with 5 kW power supply/controller and automated pocket selection. Source and substrate shutters, and rotation. Quartz crystal sensor heads with Inficon SQC-310 process controller for automated process control per user-defined rates/thicknesses.

*Magnetron sputtering sources can be added alongside the above techniques.

Service requirements:

All MiniLab 080 tools require chilled water, dry compressed air, nitrogen for venting (optional) and electrical power (three-phase for e-beam evaporation). Sputtering systems also require process gases (argon, oxygen and nitrogen). Exact requirements will be provided with quotations or on request.

Get a quote for a MiniLab 080

This website uses cookies to ensure you get the best experience on our website. By continuing to browse on this website, you accept the use of cookies for the above purposes.
  • Sign up to our newsletter